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Note: This chapter is based on Bacher (2000) and Bacher (1996: 353-408).

7.1 A Probabilistic Clustering Model for Variables of Mixed Type

K-means clustering models are widely used for partitioning large data bases to homogeneous clusters (Jain and Dubes 1988: 90). However, k-means clustering has certain disadvantages: 

· The variables must be commensurable (Fox 1982, chapter 2). This implies interval or ratio variables with equal scale units. 

· Each pattern (case) is assigned deterministically to one and only one cluster. This may result in biased estimators of the cluster means if the clusters overlap. 

· There is no accepted statistical basis, even though a lot of approaches are now available (Bock 1989, Bryant 1991, Jahnke 1988, Pollard 1981, 1982).

This chapter develops a probabilistic clustering model for variables of mixed type (therefor labeled as general probabilistic clustering model) that overcomes the problems of k-means clustering: 

· Variables with different measurement levels ( nominal, ordinal and/or interval or ratio (=quantitative variables) ( and different scale units can be analyzed without any transformation of the variables. 

· Each pattern is assigned probabilistically to the clusters. 

· Finally, the model has a statistical basis, the maximum likelihood approach. 

The Model

The main idea of model is to use probabilities 
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, as is the case in k-means clustering. 
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 is the probability that pattern g belongs to cluster k, whereas 
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 is the squared Euclidean distance between pattern g and the center of cluster k. By Bayes' theorem, 
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 may be expressed as follows
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where ((k) is the probability that a random selected pattern belongs to cluster k (k = 1, 2, ..., K) and ((g/k) is the probability of observing the pattern g given cluster k. The model assumes that the ((g/k)'s may be expressed as functions of unknown parameters of the clusters k:
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where (ik are the unknown parameters of cluster k for the variables i (i = 1, 2, ..., m), xgi is the value of pattern g in variable i, and ((xgi/(ik) is the probability of observing xgi given the parameters (ik of cluster k for variable i. The model is based on the assumption that the probability of observing xgi is independent of the probabilities of observing xgi* within each cluster k for all i*(i. This assumption is well known from latent class analysis as the axiom of local independence (for instance, Fielding 1977: 128). In fact, our probabilistic clustering model contains all known models of latent class analysis (see figure 7-1). But it also allows analysis of data with variables of mixed type. The manifest variables may be nominal, ordinal and quantitative. For each variable i, ((xgi/(ik) is calculated. ((xgi/(ik) is a probability and can only vary between zero and one. As a consequence, the problem of incommensurability does not occur.
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Figure 7-1: Latent class models as submodels of a general probabilistic clustering model

The functional form of the ((xgi/(ik)´s and the parameters (ik depend on the measurement levels of the variables i. If variable i is nominal, ((xgi/(ik) is 
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where pattern g has the value j in variable i and (i(j)k is the probability of observing category j in variable i given cluster k.

If variable i is ordinal, our model uses the latent class model for ordinal variables of Rost (1985). ((xgi/(ik) is 
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where xgi is the score of the pattern g in the variable i, mi is the number of categories of variable i, and (ik is the probability of a higher score in the variable i in cluster k. For the model, the scores of the ordinal variable must begin with zero. The actual interpretation of (ik depend on the coding of the ordinal variable. If we analyse for example educational levels, where 0 indicates low education and 2 high education, (ik is the probability of having higher education. If the ordinal variable i is an attitude scale, where higher number expresses disagreement, (ik is the probability of higher disagreement.

For quantitative variables, our model uses the following function for the ((xgi/(ik)'s:
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where ((...) is the density function of the standard normal distribution, xgi is the value of pattern i in the quantitative variable i, (ik is the mean of cluster k, and (ik is the standard deviation in the quantitative variable i. Contrary to the classical latent profile model, we assume a normal distribution of the patterns for each quantitative variable in each cluster k. This is necessary for the maximum likelihood estimation (see next section). However, it should be noted that our model is more restrictive in this aspect than the classical latent profile model. 

Table 7-1 summarizes the parameters of the general probabilistic model. For K clusters, the number of parameters r to be estimated is

(6)
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where Inom is the number of nominal variables, Ji is the number of categories for the nominal variable i, Iord is the number of ordinal variables, and Iquant is the number of quantitative variables.

Parameters (ik
Interpretation
Restrictions

for the clusters:

((k)
probability that a random selected pattern belongs to cluster k
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for nominal variables:

(i(j)k
probability of observing category j for variable i in cluster k
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for ordinal variables

(ik
probability of observing a higher or lower value in variable i in cluster k


for quantitative variables

(ik
(ik
mean of variable i in cluster k

standard deviation of variable i in cluster k


Table 7-1: The parameters (ik of the general probabilistic clustering model

Estimation of the Model

The parameters can be estimated by the EM algorithm (see Bacher 2000). 

Model Fit and Model Selection

In practice, the number K of clusters is unknown. To determine the number of clusters, the model is estimated for different K's, where K should start with one. After estimation, the likelihood ratio test can be used for model selection. For two cluster solutions with K and K* clusters (K* < K), the LR test statistic is defined as
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where
[image: image16.wmf]lK* is the log-likelihood value for the model with K* clusters and lK is the log-likeli​hood value for the model with K clusters. LR(K-K*) is asymptotically distributed as chi-square with r - r* degrees of freedom, where r is the number of parameters for the model with K parameters and r* is the number of parameters for the model with K* parameters. 

The LR(K-K*) statistics can be used to select the most appropriate number of clusters K within a set of cluster solutions {1, 2, ..., Kmax} by the following rule: Choose the cluster solution K that satisfies the following conditions: (1) All LR(K**-K*) are significant, if K* ( K and K** ( K. (2) All LR(K**-K*) are not significant if K** ( K* and K* ( K. This rule was originally proposed by Kendall (1980: 41-42) for k-means clustering. In practice, the rule may lead to no definitive solution and should not be applied automatically. 

Instead of the LR test, the adjusted LR test of Wolfe (for instance, Everitt 1981: 66) can be used. The adjusted LR test statistic is defined as:
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where K* < K, r is equal 
[image: image18.wmf](

)

J

I

I

i

i

I

ord

quant

nom

-

+

+

=

å

1

1


In addition, the following goodness-of-fit indices may be computed
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The GFI0(K) index measures the amount of deviance of the one-cluster model explained by the model with K clusters; the GFI1(K) the proportional improvement of deviance explained by the model with K clusters in contrast to the model with K-1 clusters. Both indices are heuristic measures. Both of them should be between zero and one, although GFI1(K) might become negative if the algorithm fails to converge.

Modification of the model

Similarly to the structural equation models, certain parameters may be fixed or constrained. Fixed parameters are parameters that have been assigned given values. These values are not changed during the iteration. Contrary to fixed parameters, constrained parameters are unknown but equal to one or more other parameters. In a model - for example - the mean (ik may be set equal to the mean (i*k. The main advantage of imposing restrictions on the parameters is to facilitate interpretation. To judge a constrained model, the test statistics and measures of the previous section can be applied.

An Example with Artificial Data

In order to demonstrate the reliability of the general probabilistic model, artificial data with a known cluster structure will be analyzed in this section. The artificial data set consists of two clusters and three independent variables. In each variable cluster 1 has a normal distribution with a mean of +1.5 and a standard deviation of 1.0; cluster 2 a normal distribution with a mean of -1.5. Each cluster consists of 500 patterns. Two of the three variables have been categorized for the analysis. A category value of 0 was assigned if the value of the variable was less than -1; if the value was greater than or equal to -1 and less than +1, a category value of 1 was assigned; and if the value was greater than or equal to +1, a category value of 2 was assigned. One of the two variables was analyzed as a nominal variable, the other one as an ordinal variable.

For comparison, a second artificial data set was generated by the same logic. Contrary to the first artificial data, both clusters have means of 0 in the variables. Whereas the first artificial data set represents a two-cluster structure, the second artificial data set represents no cluster structure. For the first artificial data set, we expect the following results: (1) All LR(K**-K*) values should be significant for the one-cluster solution, if K** = 1 and K* ( 1, whereas all LR(K**-K*) values should not be significant, if K** ( K* and K* ( 1. (2) GFI0(K=1) assumes a relatively high value, and GFI1(K=1), whereas GFI0(K) should not increase for solutions with K > 2, and GFI1(K) should have values near zero for K > 2. (3) The estimated parameters should not differ too much from the true parameters.

Table 7-2 shows the number of iterations, the values of the log-likelihood functions, and the values of the goodness-of-fit measures. The log-likelihood functions do not decrease continuously with the number of clusters. The log-likelihood value of the 5-cluster solutions is larger than the functions value for the 4-cluster solutions. However, the EM algorithm needs more than 500 iterations to find any solutions for 5 clusters. As mentioned earlier, a large number of iterations very often indicates that the model does not fit for the analyzed number of clusters. This will also be the case for the artificial data set with no cluster structure.


 K    number of    log(L(K))       GFI0(K)    GFI1(K)


      iterations                     in %        in %


  1        3       -4075.082        0.000           -


  2       24       -3514.699       13.751      13.751


  3      128       -3511.324       13.834       0.096


  4      146       -3508.804       13.896       0.072


  5      528       -3509.433       13.881      -0.018


  6      441       -3506.367       13.956       0.087

Table 7-2: Number of iterations, log-likelihood functions and goodness of-fit measures

for the artificial data set with two clusters

The goodness-of-fit measures show a sharp increase between the one-cluster and the two-cluster solution. The increase is about 14%. Note that GFI0(K=1) always equals GFI1(K=1). For the further solutions, GFI0(K) does not increase and GFI1(K) is nearly 0. This indicates a two-cluster solution. The LR(K-K*) test statistics lead to the same result (see table 7-3): All LR((K**=1)-K*) are significant for K* = 2, 3, .., 6 and all LR(K**-K*) are not significant if K** ( K* and K* = 2, 3, 4 or 5.


LR(K-K*) test statistics


(lower triangle = test statistics, 


upper triangle = significance level 100((1-p), 


where p is the error level)


      K = 1      K = 2      K = 3      K = 4      K = 5      K = 6


1      0       100.0000   100.0000   100.0000   100.0000   100.0000


2  1120.7668      0        65.4822    53.5898     8.7839    13.9032


3  1127.5162     6.7494      0        45.9718     1.3617     6.6188


4  1132.5562    11.7894     5.0401      0         -(a)       3.8482


5  1131.2984    10.5316     3.7822     -(a)        0        59.0204


6  1137.4299    16.6631     9.9137     4.8736     6.1315      0    


adjusted LR(K-K*) test statistics of Wolfe (lower triangle = test


 statistics, upper triangle = significance level 100((1-p), 


where p is the error level)


       K = 1      K = 2      K = 3      K = 4      K = 5      K = 6


1      0       100.0000   100.0000   100.0000   100.0000   100.0000


2  1114.6026      0        43.0370    23.6999     0.8269     1.1865


3  1121.3148     6.7089      0        24.1891     0.1107     0.5419


4  1126.3272    11.7187     5.0073      0         -(a)       0.4065


5  1125.0763    10.4684     3.7577     -(a)        0        36.0685


6  1131.1740    16.5631     9.8493     4.8395     6.0855      0    


(a) This value cannot be computed because the log-likelihood value 


increases between the four-cluster and the five-cluster solution

Table 7-3: LR  test statistics for the first artificial data set with two clusters

Finally, the estimated parameters do not differ too much form the true parameters.

Contrary to the first artificial data set with a two-cluster structure, no sharp increase for the goodness-of-fit measures can be found for the second artificial data set with no cluster structure. The measures are all smaller than 1% (see table 7-4). For each cluster solution except for the one-cluster solution, a large number of iterations are needed. The LR(K-K*) values show no significance (see table 7-5). This indicates that no cluster structure underlies the data.


 K    number of    log(L(K))       GFI0(K)    GFI1(K)


      iterations                     in %       in %


  1        3       -2626.448        0.000        -


  2      225       -2626.175        0.010       0.010


  3      936       -2625.189        0.048       0.038


  4     1001       -2624.535        0.073       0.025


  5      756       -2620.473        0.227       0.155


  6     1001       -2619.593        0.261       0.034

Table 7-4: Number of iterations, log-likelihood functions and goodness of-fit measures

for the second artificial data set with no cluster structure


LR(K-K*) test statistics (lower triangle = test statistics, 


upper triangle = significance level 100((1-p), 


where p is the error level)


      K = 1    K = 2    K = 3    K = 4    K = 5    K = 6


1     0       0.4037   0.2478   0.0366   2.0221   0.5355


2    0.5458    0       7.8273   0.7476  12.4606   3.7578


3    2.5174   1.9716    0       3.0206  33.3343  11.5092


4    3.8262   3.2804   1.3088    0      77.0532  37.2940


5   11.9490  11.4032   9.4316   8.1228    0       6.0577


6   13.7105  13.1647  11.1931   9.8843   1.7614    0    


adjusted LR(K-K*) test statistics of Wolfe (lower triangle = test


statistics, upper triangle = significance level 100((1-p), 


where p is the error level)


      K = 1    K = 2    K = 3    K = 4    K = 5    K = 6


1     0       0.0522   0.0163   0.0014   0.0735   0.0107


2    0.5428    0       1.8770   0.0551   1.4228   0.1645


3    2.5036   1.9598    0       0.5440  10.3488   1.2504


4    3.8052   3.2607   1.3003    0      57.1675  12.4756


5   11.8833  11.3348   9.3703   8.0660    0       1.3261


6   13.6351  13.0857  11.1203   9.8151   1.7482    0   

Table 7-5: LR test statistics for the second artificial data set with no cluster structure

An Empirical Example

The goodness-of-fit indices and the LR test statistics perform quite well for the artificial data sets. In practice, the situation is very often more complex and the determination of the number of clusters can be difficult. Different cluster solutions may be appropriate. This is the case for the example of table 7-6. The results are based on a survey of 1960 children in Austria. The aim of the analysis was to find out if the children can be assigned to different social classes. The occupations of the parents, their educational levels and the per capita household income were used as classification variables. The occupation was treated as nominal variable, the educational level as ordinal variable and the per capita household income as quantitative variable. Table 7-6 shows the number of iterations, the log-likelihood values and the goodness-of-fit indices. All GFI0(K) values are smaller than 6%. Only a small amount of the basis deviance is explained by the cluster solutions. This indicates that an underlying class structure with very distinct and well separated social classes does not exist. 


 K    number of    log(L(K))      GFI0(K)    GFI1(K)


    iterations                       in %       in %


  1        3      -26798.661         -         -


  2       45      -26005.419        2.960     2.960


  3      243      -25905.318        3.334     0.385


  4       91      -25576.964        4.559     1.268


  5      237      -25549.555        4.661     0.107


  6      289      -25497.352        4.856     0.204


  7      361      -25486.569        4.896     0.042


  8      415      -25471.113        4.954     0.061


  9      405      -25459.052        4.999     0.047


 10      501      -25441.478        5.064     0.069


 11      501      -25433.492        5.094     0.031


 12      492      -25332.899        5.470     0.396

Table 7-6: Number of iterations, log-likelihood functions and goodness of-fit measures

for an empirical data set

For the two-cluster and four cluster solutions, the GFI1(K) index is greater than 1%. These two solutions also require much fewer iterations than the other models (except, of course, the one-cluster solution). Hence, a two-class or four-class structure may be used for further analysis. These solutions are shown in table 7-7. The two-cluster solution shows two classes, a lower class and an upper class. The lower class has an average per capita income of about 7700 ATS, lower education, and mainly recruits from skilled workers, unskilled worker and white-collar workers in a middle position. The upper class has a higher per capita income and a higher education level. White-collar workers in an high or middle positions and professionals build this class. Clusters 2 to 4 of the four-cluster solution can be labeled as "middle class", "lower class" and "upper class". Cluster 1 shows an inconsistency. This cluster is characterized by a middle level of education, but a very low per capita income. It recruits from quite different occupational levels. 

Finally the LR test statistics does not lead to a definitive decision on the number of clusters. It suggests, that 12 or more clusters may underlie the data set because the 12-cluster solution is significant to all previous solutions with fewer clusters. 

                            two-cluster    +  four-cluster solution

k                            1        2    +     1        2        3        4

p(k/g)                      0.64     0.36  +    0.13     0.29     0.30     0.28

occupation of parents                      + 

  white-collar worker                      + 

  in a high position        0.05     0.42  +    0.16     0.11     0.02     0.46

  skilled worker            0.31     0.03  +    0.14     0.32     0.30     0.02

  professionals             0.06     0.19  +    0.12     0.07     0.07     0.20

  unskilled worker          0.18     0.01  +    0.10     0.10     0.25     0.01

  white-collar worker                      + 

  in a middle position      0.21     0.31  +    0.20     0.35     0.14     0.29

  farmer                    0.10     0.00  +    0.20     0.00     0.12     0.00

  white-collar worker                      +

  in a low position         0.08     0.02  +    0.08     0.05     0.09     0.02

educational level of parents               +

  p(2/k)                    0.31     0.80  +    0.40     0.41     0.28     0.85

per capita household income                +

  mu(3/k)                7654.36 13671.84  + 1245.63 11776.63  7102.03 15027.41

  sigma(3/k)             4346.61  7351.55  +  282.85  3854.00  2088.46  7060.39

Table 7-7: Estimated  parameters for the two-cluster and the four-cluster solution

of the example of table 7-6

Summary and Discussion

This paper has proposed a general probabilistic model. The model can be used for variables with mixed types and contains the well known models of latent class analysis as submodels. It helps to overcome some problems of k-means clustering. The variables can be of mixed type, the underlying structure can overlap, and the model selection is based on a statistical basis, the maximum likelihood method.

However, the determination of the number of clusters still remains a problem if real data are analyzed. The proposed goodness-of-fit measures and the LR test strategy give some guide to selecting appropriate cluster solutions, but in most cases more than one solution will be appropriate. We recommend using all these solutions in further analyses and selecting the most appropriate one according to the results of these analyses (Bacher 1996: 17-24).

7.2 Computer Programmes

The model described above is available in ALMO (Bacher 1999).

A more sophisticated model is included in LatentGold (Vermunt and Magidson 2000). For nominal and ordinal variables a multinomial distribution is assumed with further restrictions on ordinal variables. For continuous (quantitative) variables a multivariate normal distribution is assumed. LatentGold contains three models:

1. LC cluster models for mixed variables: An unknown nominal (= latent) variable (the latent classes) describes the variation in a set of p dependent variables with mixed measurement levels.

2. LC factor models for mixed variables: One or more dichotomous (or ordinal) latent variable(s) describes the variation in a set of p dependent variables with mixed measurement levels.

3. LC regression models for mixed variables: One or more regressor(s) describes the latent classes and the indicators used to estimate the latent classes.

LatentGold computes different test statistics that allow you to select the best model.
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