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Note:

This chapter is based on Bacher (1996: 141-166, 238-278, 297-308). Hierarchical methods are also described in Everitt (1981: 24-34) or Gordon (1999: 78-90).

4.3 A second Application – Clustering Cases

Preferences for certain leisure time activities are one group of variables frequently used in life style research. Lechner (2000), for example, uses different leisure time activities in her study. We will use one subscale. In our survey of apprentices the respondents were questioned the activities they liked most. They were to mark the most preferred activities with a cross. A list of 18 activities was used. Table 4-4 summarises the frequencies for a random subsample of 150 cases.

Which leisure time activities do you like most?
in % (n=150)

repairing a car, motor cycle, bike and going about 
39.3%

playing a computer game on the computer or a slot machine
33.3%

painting, photographing
31.3%

shopping
53.3%

reading
37.3%

listening to music
85.3%

lazing away
69.3%

practising sports
56.0%

going to a disco, dancing
61.3%

going to the cinema
60.7%

attending a pop concert, rock concert
24.0%

going to a party
70.7%

playing an instrument
16.7%

visiting a theater, a museum, going to classical concert etc.
13.3%

studying
11.3%

viewing television
67.3%

visiting a centre for young people
15.3%

doing something forbidden 
18.7%

Table 4-4: Most preferred leisure time activities

The aim of the analysis is to answer the question 'can we identify clusters of respondents with different preferences?'. We decided to use Ward's method, because dichotomous variables can be treated as interval-scaled. 

Ward clustered 150 cases. So the agglomeration schedule consists of 149 steps. Only the last steps (e.g. the last 20 or 30 ones) are of interest. However, it is not possible to truncate the schedule in SPSS at a certain step. SPSS always reports all steps. If 500 cases are clustered, 499 steps are printed. In table 4-5 the first steps were deleted manually. 

 
combined clusters 
coefficient
stage cluster 1st appears 
next stage
 
Stage
Cluster 1
Cluster 2
 
Cluster 1
Cluster 2
 
 
.

.







130
1
14
262,568
127
115
145
 
131
2
5
269,604
125
121
143
 
132
3
27
276,715
108
101
139
 
133
13
23
284,049
92
84
142
 
134
6
22
291,518
104
106
138
 
135
39
44
298,991
118
114
141
 
136
15
16
307,395
123
129
144
 
137
18
32
315,905
122
126
140
 
138
6
21
324,604
134
119
142
 
139
3
7
333,339
132
124
145
 
140
18
33
342,848
137
120
143
 
141
9
39
352,803
128
135
146
 
142
6
13
363,034
138
133
146
 
143
2
18
376,191
131
140
148
 
144
15
31
390,829
136
113
147
 
145
1
3
406,294
130
139
147
 
146
6
9
422,717
142
141
148
 
147
1
15
447,079
145
144
149
 
148
2
6
477,039
143
146
149
 
149
1
2
521,867
147
148
0
 
Table 4-5: Agglomeration schedule for clustering cases

It is difficult to realize a sharp increase in the SPSS output. Also the scree diagram reveals no elbow or very soft elbows depending on the scaling of the x axis (see figure 4-11a to figure 4-11c).

[image: image23.wmf]NCLUSTER

5,00

13,00

21,00

29,00

37,00

45,00

53,00

61,00

69,00

77,00

85,00

93,00

101,00

109,00

117,00

125,00

133,00

141,00

149,00

Wert LEVEL

600

500

400

300

200

100

0

Figure 4-11a: Scree diagram for all solutions (number of clusters from 149 to 1)
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Figure 4-11b: Scree diagram for all solutions (number of clusters from 29 to 1) 

Figure 4-11c: Scree diagram for all solutions (number of clusters from 14 to 1)

Interpretation is easier, if the differences between two consecutive steps are computed. The results are:

NCLUSTER    LEVEL   PLEVEL   DLEVEL

   19,00   269,60   262,57     7,04

   18,00   276,71   269,60     7,11

   17,00   284,05   276,71     7,33

   16,00   291,52   284,05     7,47

   15,00   298,99   291,52     7,47

   14,00   307,40   298,99     8,40

   13,00   315,90   307,40     8,51

   12,00   324,60   315,90     8,70

   11,00   333,34   324,60     8,74

   10,00   342,85   333,34     9,51

    9,00   352,80   342,85     9,95

    8,00   363,03   352,80    10,23

    7,00   376,19   363,03    13,16

    6,00   390,83   376,19    14,64

    5,00   406,29   390,83    15,46

    4,00   422,72   406,29    16,42

    3,00   447,08   422,72    24,36

    2,00   477,04   447,08    29,96

    1,00   521,87   477,04    44,83

NCLUSTER is the number of clusters, LEVEL the agglomeration level (coefficient), PLEVEL the agglomeration level of the previous solution, DLEVEL is the difference. Example: the level of the three cluster solution is 447,08, the level of the previous four cluster solution is 422,72. Therefore, the difference has a value of 24,36.

Increases can be observed between 8 and 7 clusters, 4 and 3 clusters and 2 and 1 cluster. Therefore, a solution with 8, 4 or 2 clusters may be accepted. According to the scree test criteria the first increase is important favouring the 8 cluster solution. However, it is difficult to judge, if this increase is significant. If this is not the case the solution with 4 clusters would be the best one. 

This is the syntax for those who want to reproduce the results:

data list free/step cluster1 cluster2 level first1 first2 next.

begin data.

1
2
99
,000
0
0
43
 

2
38
53
,000
0
0
15
 

3
126
150
,500
0
0
51
 

4
127
143
1,000
0
0
16
 

5
50
140
1,500
0
0
20
 

6
112
130
2,000
0
0
18
 

7
74
125
2,500
0
0
86
 

8
28
117
3,000
0
0
17
 

9
23
115
3,500
0
0
84
 

10
10
100
4,000
0
0
19
 

11
37
93
4,500
0
0
103
 

.

.

141
9
39
352,803
128
135
146
 

142
6
13
363,034
138
133
146
 

143
2
18
376,191
131
140
148
 

144
15
31
390,829
136
113
147
 

145
1
3
406,294
130
139
147
 

146
6
9
422,717
142
141
148
 

147
1
15
447,079
145
144
149
 

148
2
6
477,039
143
146
149
 

149
1
2
521,867
147
148
0
 

end data.

compute plevel=lag(level).

compute dlevel=level-plevel.

compute ncluster=150-step.

temp.

select if (ncluster < 20).

list var=ncluster level plevel dlevel.

GRAPH

  /LINE(SIMPLE)=VALUE( level) BY ncluster .

temp.

select if (ncluster < 15).

GRAPH

  /LINE(SIMPLE)=VALUE( level) BY ncluster 

The procedure was: The agglomeration schedule was marked and copied to the pin board. Afterwards we opened a syntax window and pasted the schedule in the window. We defined the schedule as a new data file (DATA LIST ...). PLEVEL was computed using a LAG variable, NCLUSTER as 150 minus step and DLEVEL as the difference of LEVEL and PLEVEL. The variables were printed with the LIST command. Finally the scree diagrammes were plotted with the procedure GRAPH.

The dendrogram is difficult to interpret, too. It consists of more than one page (see figure 4-10). Unfortunately, SPSS does not offer an option to truncate the dendrogram for a large number of clusters so that the dendrogram only requires one page. This generally facilitates interpretation and allow to discover the number of clusters. Nonetheless, four hills can be distinguished. But perhaps there are more. 

 Dendrogram using Ward Method




first hill (cluster)

           2   
          99   
          38      
          53      
          91       
          20    
          66        
           4        
          73   
          26               
           5           
          36              
          87             
          98             
          40             
          19              
         136               
          43              
consists perhaps of two further hills (clusters)?

          35                                 
         111                             
          33                          
          61                             
         124                             
          42                              
          29                              
         131                             
         105                          
          50                                
         140                            
          89                               
          83                             
          71                             
          18                             
         101                                 
          62                               
          69                            
          32                              
          75                              
         107                               
          37                               
          93                                            
          63                                               
         102                                                 




a second hill

          47                                               
          58                                            
          59                                              
          84                                            
           9                                             
          86                                           
          65                                               
         116                                              
          52                                        
         123                                               
         129                                           
          79                                          
          74                                           
         125                                          
          44                                             
          81                                           
         121                                           
          39                                             
         110                                
          57                                               
          23                                               
         115                                          
         139                                            
          80                                             
         145                                         
         106                                               
         120                                              
          13                                                
         137                                       
         142                                              
          60                                          
          67                                             
          95                                             
          21                                              
         112                                                
         130                                             
          46                                           
          85                                               
         119                                                
           6                                               
         135                                                 
          28                                                 
         117                                                 
         114                                               
          22                                                
         127                                           
         143                                                 
          72                                                 
         118                                                
         144                                                  




a third hill

         126                                                  
         150                                              
         122                                     
          31                                              
          97                                              
          34                                               
          78                                                
         103                                               
         128                                       
          82                                            
          90                                             
          15                                         
         147                                             
          41                                           
         133                                      
          16                                              
          77                                           
          55                                             
         146                                            
          45                                            
          70                                               
          76                                            
         138                                               
          94                        
          56                          




a fourth hill

          14                        
          68                         
          17                       
         148                           
         149               
         141                      
          11                        
          54                         
          51                        
          10                          
         100                        
          96                      
          64                         
          88                 
           1                
          92                
         132               
          12           
          24              
         113              
           7               
          25                
         104        
         108        
         134         
          27    
          30       
          49      
          48      
         109    
           3   
           8   
As already mentioned, interpretation becomes easier if the dendrogram is truncated. 

Summarizingly, the application of CLUSTER could be facilitated, if SPSS offers some options to specify the output, to print and to plot only the last steps of the schedule and to report the increase and the number of clusters. 

Additionally, a statistical test supporting the decision on the number of clusters would be an advantage. We will discuss such tests in chapter 4-7. However, note that the question 'can I substantially interpret the clusters?' is as important as formal aspects for fixing the number of clusters. 

In the case of clustering cases we are very often not interested in the classification of cases (the information that respondent 136 is assigned to cluster 1 is of little value), but in some characteristics of the clusters we are, e.g. in cluster centres. CLUSTER does not compute cluster centres. They can be generated using the following procedure:

· Saving the membership of the objects to the clusters in CLUSTER

· Computing the centres by MEANS using the cluster membership as grouping variable.

The syntax corresponding to this procedure is: 

CLUSTER  v31.01 v31.02 v31.03 v31.04 v31.05 v31.06 v31.07 v31.08 

         v31.09 v31.10 v31.11 v31.12 v31.13 v31.14 v31.15 v31.16 

         v31.17 v31.18

  /METHOD WARD

  /MEASURE= SEUCLID

  /PRINT SCHEDULE

  /SAVE CLUSTER(4) 

  /PLOT DENDROGRAM.

MEANS

  TABLES=v31.01 v31.02 v31.03 v31.04 v31.05 v31.06 v31.07 v31.08

         v31.09 v31.10 v31.11 v31.12 v31.13 v31.14 v31.15 v31.16 

         v31.17 v31.18  BY clu4_1

  /CELLS MEAN COUNT .

The SAVE command forces CLUSTTER to add a new variable to the data file. This variable is automatically labeled as clus4_1. (If we rerun the syntax without reading the data file again SPSS generates a variable clus4_2, and so on. If the number of clusters is changed, e.g. to 2, SPSS creates a variable, e.g. Clus2_1.)

The MEAN command computes the cluster centres (see table 4-6).

Ward's method

car, motor cycle
playing compu-ter game
painting
shopping
reading
listening music
lazing away
practi-cing sports
going to a disco, dancing

1
Mean
,63
,13
,44
,25
,44
,94
,53
,53
,38
 
 
N
32
32
32
32
32
32
32
32
32
 
2
Mean
,70
,42
,28
,56
,12
,86
,86
,81
,98
 
 
N
43
43
43
43
43
43
43
43
43
 
3
Mean
,16
,16
,40
,86
,66
,94
,76
,44
,60
 
 
N
50
50
50
50
50
50
50
50
50
 
4
Mean
,28
,52
,08
,20
,08
,56
,56
,48
,36
 

N
25
25
25
25
25
25
25
25
25
 
Total
Mean
,43
,29
,32
,53
,36
,85
,71
,57
,62
 
 
N
150
150
150
150
150
150
150
150
150
 
ward's method

going to the cinema
going to a pop, rock concert
going to a party
playing an in-stru-ment
visiting a theater, ....
studying 
viewing television
going to a centre for young people
doing some-thing forbid-den

1
Mean
,28
,03
,06
,47
,09
,22
,63
,09
,09
 
 
N
32
32
32
32
32
32
32
32
32
 
2
Mean
,93
,40
,98
,12
,12
,26
,86
,21
,21
 
 
N
43
43
43
43
43
43
43
43
43
 
3
Mean
,82
,18
,74
,08
,22
,06
,62
,08
,18
 
 
N
50
50
50
50
50
50
50
50
50
 
4
Mean
,24
,12
,80
,08
,00
,12
,44
,12
,64
 

N
25
25
25
25
25
25
25
25
25
 
Total
Mean
,64
,20
,67
,17
,13
,16
,66
,13
,25
 
 
N
150
150
150
150
150
150
150
150
150
 
Table 4-6: Cluster centres for the solution with four clusters

Table 4-6 is difficult to interpret. The following strategies facilitate interpretation:

1. The variables are standardized before the MEAN procedure is used. The resulting means have positive or negative signs. The total mean is zero. A positive sign indicates a value above the total mean, a negative below the total mean. Values larger (smaller) than a certain threshold can be seen as important. Interpretation can focus on those values.

2. Instead of MEAN a discriminant analysis is used. The classification (membership) is used as the dependent variable, the variables used to cluster the cases are taken as the independent variables. Discriminant analysis computes information which variables separate the clusters best. The interpretation can concentrate on these variables.

3. The variables are reduced before the cases are clustered by factor analysis or another appropriate scaling method. The derived scales (e.g. factors) are used in CLUSTER and MEANS. This strategy facilitates interpretation because fewer variables are used in both procedures.

4. A typical case for a cluster is used instead of the means. These typical cases – also called cluster exemplars (Wishart 1999), mediods (Kaufman and Rousseeuw 1990: 69), leading case (Hartigan 1975: 74-83) or centrotypes  - have only empirically observed values, in our case 0 or 1, and are easier to interpret. 

Strategy 1 and 2 may be combined, as well as strategy 2 and 3. Strategy 1 is indirectly applied in strategy 3, because derived scales are usually standardized as it is the case for factor analysis.

4.4 Stability of a Cluster Solution

A cluster solution is said to be stable, if a small modification of the method specified and the data used does not change the results too much. Clustering techniques and the dissimilarity (resp. similarity) measure may be modified in a stability analysis of methods. They may be changed in some application. In the example of chapter 4.2 (clustering variables) all other methods – except Ward, median and centroid – may be specified as clustering methods. Other coefficients - like the simple matching coefficient or Jaccard's coefficient (if positive and negative matches should have different weight) - may be used instead of the correlation coefficient. In the example of chapter 4.3 (clustering cases) all other clustering methods may be used, but squared Euclidean distances must be used for Ward´s method.

Practically, stability is tested by varying the specifications of CLUSTER and rerunning CLUSTER. Figure 4-12 summarizes the results of single linkage and complete linkage, if these two methods are used instead of BAVERAGE. Both methods lead to the same four cluster solution. We can formulate the hypothesis 'the four cluster solution is stable in reference to the clustering techniques' because single and complete linkage have extreme opposite properties and lead to the same solution for four clusters. This is not the case for the solution with three clusters. The solutions are:


Cluster 1
Cluster 2
Cluster 3

single
{v39.03, v39.05, v39.02, v39.07}
{v39.01, v39.08}
{v39.04, v39.08}

complete
{v39.03, v39.05, v39.04, v39.06}
{v39.01, v39.08}
{v39.04, v39.08}

baverage
{v39.03, v39.05}
{v39.01, v39.08}
{v39.02, v39.07, V39.04, v39.08}

Dendrogram using Single Linkage

                         Rescaled Distance Cluster Combine

    C A S E      0         5        10        15        20        25

  Label     Num  +---------+---------+---------+---------+---------+

  V39.03      3   
  V39.05      5                                                  
  V39.02      2   
  V39.07      7              
  V39.01      1   
  V39.08      8        
  V39.04      4   
  V39.06      6   

 Dendrogram using Complete Linkage

                         Rescaled Distance Cluster Combine

    C A S E      0         5        10        15        20        25

  Label     Num  +---------+---------+---------+---------+---------+

  V39.03      3   
  V39.05      5                                          
  V39.04      4          
  V39.06      6                    
  V39.02      2          
  V39.07      7                
  V39.01      1   
  V39.08      8   

Figure 4-12: Results of complete and single linkage for the example of chapter 4.2

The procedure is straightforward, if stability according to the to similarity measure are to be tested. The effort increases, if both factors (similarity measures and clustering techniques) are being analysed. It is necessary to combine both factors. The design is shown in figure 4-13. The number of analyses is 12, if, for example, four similarity measures and three methods are allowed. 

possible clustering techniques
similarity measure


measure 1
measure 2
...
measure k

complete
analysis 1
analysis 4
...
analysis 3.k-2

baverage
analysis 2
analysis 5
...
analysis 3.k-1

single
analysis 3
analysis 6
...
analysis 3.k

Figure 4-13: Concept for testing stability against method and similarity measure

Complexity increases further, if the survey population is to be studied as a third factor that might influence stability. If the results are stable, randomly drawn subsamples (or subsamples characterized by certain variables) should produce similar results. If this factor should also be analysed simultaneously, a factorial design with three factors is the result. For five subsamples, four similarity measures and three different methods 60 analyses must be compared. Beside the population, the variables are a second factor characterizing data. Stability according to variables may be tested, for example, by adding random variables.

One strategy to reduce this amount is to split the analysis of stability: 

· testing stability against techniques and similarity measures in a first step 

· analysing stability according to population in a second step

· analysing stability according to variables in a third step.

Statistical measures comparing classifications, dendrograms and cluster centres of different solutions are discussed in the next chapters. Note: Do not be influenced by these statistics to plan your analysis more untidy.

4.5 Comparing Classifications 

Stability was tested visually by comparing the dendrograms for different solutions in the previous chapter. This technique is troublesome for a larger number of objects (cases). An index or a test statistic for the similarity of different classifications could overcome this problems.

The Rand index (Rand 1971) is used for this purpose. The index compares two classifications of objects. The number of clusters may be different for the two solutions. The Rand index is
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where rg,g* is equal to 1, if two objects g and g* belong in both classifications CLi and CLj to the same cluster or in both clusters to different clusters. The Rand index measures the proportion of consistent allocations (two objects belong in both classifications to the same cluster or to different clusters). The number of consistent allocations is nSONDZEICHEN 215 \f "Symbol"(n-1)/2 and the Rand index is equal 1 for a perfect fit. Values greater than 0.7 are considered as sufficient (Dreger 1986, Fraboni and Salstone 1992). Among others Morey and Agresti (1984) proposed a modification of the Rand index. Hubert and Arabie (1985 quoted in Gordon 1999: 198) modified the index so that its maximum is 1 and its expected value is zero, if the classifications are selected randomly. 

SPSS does not offer the Rand index. It may be computed with a syntax program (see appendix) or by using another software (like ALMO). 

The Rand index may be used to compare classifications that result from clustering cases or variables. 

4.6 Comparing Cluster Centres

These methods will be discussed within k means clustering. This method can be used to test the stability of cluster centres against method, similarity measure and population. 

4.7 Statistical Tests of the Number of Clusters

Mojena (1977) formalized the method of the inverse scree test. He developed the following null models for statistical testing. 

Model 1: The agglomeration levels are normally distributed by mean 
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and standard deviation 
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The test analyses, if level k+1 is a sample point of this normal distribution. If this hypothesis does not fit to the data, a significant sharp increase occurs and the number of clusters is set equal to k. The test statistic is
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According to Mojena (1977) the null hypothesis 'k+1 belongs to the same distribution' should be rejected for values of t1 between 2,75 and  3,50. This rule corresponds to a (one sided) significance level of at least 99,7%. 

Model 2: The agglomeration levels vi  up to step k can be described by a linear regression line 
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The test analyses, if level k+1 can be predicted using this regression line. If this is not the case, a significant (sharp) increase is assumed and the number of clusters is equal to k. The test statistic is defined as 
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whereas


[image: image7.wmf])

1

(

ˆ

1

+

×

+

=

+

k

b

a

v

k

k

k


According to Mojena a sharp (significant) increase occurs if t2 is greater than 2,75. This again corresponds to a (one sided) significance level of 99,7%.

Both statistics are not available in SPSS. They may be computed by a syntax programme. The regression module can be used for t2. Both approaches in SPSS are time consuming. An acceptable alternative might be the use of an alternative computer software.

Both statistics depend – like other statistics - on the number of cases. A small increase at a very early stage in the agglomeration may become significant because n is large. This may result in a large number of clusters. Conversely no significant increase may occur if n is small.

For our example of chapter 4-2 the values of t1 and t2 are:

Teststatstik zur Bestimmung der Clusterzahl

nach MOJENA (Regel 1)

Clusterzahl   Teststatistik   Signifikanz

     7            -              -  

     6          -0.887           - 

     5          -0.694         69.477

     4          -1.024         79.261

     3          -0.974         79.809

     2          -0.973         80.615

Teststatstik zur Bestimmung der Clusterzahl

nach MOJENA (Regel 2)

Clusterzahl   Teststatistik   Signifikanz

     7            -              -  

     6           1.235           - 

     5           1.131         76.898

     4           0.592         69.357

     3           0.643         71.597

     2           0.625         71.562

The values are not significant. One reason: The number of cases (n=8) is too small.

In contrast to this result t1 is significant for 34 clusters if applied to the example of chapter 4.3, where 150 cases are analysed. Using t2 a test value larger than 2,75 occurs for seven clusters. 

Teststatstik zur Bestimmung der Clusterzahl    Teststatstik zur Bestimmung der Cluster

nach MOJENA (Regel 1)                          nach MOJENA (Regel 2)

Clusterzahl   Teststatistik   Signifikanz      Clusterzahl   Teststatistik   Signifika

.

.

    35           2.722         99.625              35           1.028         84.688

    34           2.924         99.792 ****         34           1.235         89.039

    33           2.868         99.757              33           1.186         88.101

    32           2.798         99.707              32           1.122         86.795

    31           2.879         99.766              31           1.209         88.540

    30           2.808         99.715              30           1.143         87.228

    29           3.081         99.867              29           1.420         92.094

    28           3.059         99.858              28           1.406         91.888

    27           3.291         99.928              27           1.646         94.877

    26           3.154         99.892              26           1.518         93.427

    25           3.178         99.900              25           1.551         93.827

    24           3.119         99.882              24           1.500         93.188

    23           3.075         99.866              23           1.461         92.676

    22           3.207         99.909              22           1.599         94.384

    21           3.208         99.909              21           1.607         94.475

    20           3.336         99.938              20           1.741         95.803

    19           3.481         99.962              19           1.894         96.990

    18           3.601         99.975              18           2.024         97.759

    17           3.709         99.984              17           2.143         98.308

    16           3.583         99.974              16           2.030         97.792

    15           3.729         99.986              15           2.186         98.474

    14           4.064        100.000              14           2.532         99.379

    13           3.944         99.998              13           2.429         99.178

    12           3.785         99.990              12           2.283         98.804

    11           3.607         99.976              11           2.115         98.196

    10           4.036        100.000              10           2.551         99.413

     9           3.915         99.997               9           2.442         99.208

     8           4.056        100.000               8           2.593         99.481

     7           4.408        100.000               7           2.957         99.816   ***

     6           5.287        100.000               6           3.853         99.994

     5           5.106        100.000               5           3.708         99.985

     4           6.355        100.000               4           4.983        100.000

     3           8.334        100.000               3           7.018        100.000

     2          11.280        100.000               2          10.066        100.000
In our example t2 seems to perform better. However, Whishart reports better results for t1. (Whishart 2001).

4.8 Measuring Homogeneity

The agglomeration levels provide only a vague idea of the homogeneity within the clusters. For some methods the levels are not well defined. For others the levels reflect extreme information as it is the case for single and complete linkage. So the user may be interested in additional information on homogeneity, even if the levels inform you about heterogeneity. Measures of homogeneity can be used in this situation. They assume that the average of the dissimilarities 
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 within the clusters is smaller than the average of dissimilarities 
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 between the clusters for a good classification. Different approaches have been proposed to calculate the average (Klastorin 1983). We will discuss one. The dissimilarities within and between the clusters are computed in this approach as:
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where K is the number of clusters. nk is the number of cases in cluster k. 

To test homogeneity the difference 
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or the ratio 
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can be computed. The first expression has the advantage that it is easy to construct a statistical test. 

The standard normal distribution or Chebyschev´s inequality can be used to compute a significance level testing the null hypothesis 'the dissimilarities within clusters are equal to or larger than the dissimilarities between the clusters'. The statistic is (Klastorin 1983: 95)1
z=(g-E(g))/SONDZEICHEN 115 \f "Symbol"(g),

where E(g) is the expected value of the null hypothesis that g is zero. s(g) is the corresponding standard deviation. Chebyschev´s inequality is more conservative and favors the null hypothesis. 

The statistic results in the following values, if it is applied to the four cluster solution of the example of chapter 4-2: 

G1-Homogenitaetsmass =  -0.235

Erwartungswert       =   0.000

Varianz              =   0.004

z-Wert               =  -3.535

Signifikanz          =  99.952

Fehler (Chebychev)   =   0.000

The g index is negative in our example because similarities are analysed. The z-value is –3.5. The null hypothesis 'the dissimilarities within the clusters are equal to or larger than the dissimilarities between the clusters' can be rejected. Standard normal distribution leads to a significance of 99,95% (error 1 = 0,05%). Chebychev's inequality results in an error level of 0.

Note: A higher g index does not necessarily refer to a higher homogeneity. Only the z values give evidence to this: A higher z value refers to a higher heterogeneity. 

4.9 Measuring the Fit of a Dendrogram

The dendrogram or equivalently the agglomeration schedule defines a hierarchy between the objects. Some objects are more similar than others. The agglomeration schedule resp. the dendrogramm enables you to compute a theoretical similarity or dissimilarity matrix. The theoretical or predicted dissimilarity (or similarity) between two objects g and g* combined at a certain step is set equal to the agglomeration level of this step. In the example of chapter 4.2 this rule results in the following predicted or theoretical similarities:

· V39.03 and V39.05 (object 3 and 5) are combined at a level of 0.520. So the theoretical similarity between these two objects is 0.520.

· V39.02 and V39.07 (object 2 and 7) are combined at a level of 0.164 in the next step. This results in a theoretical similarity of 0.164 between these two objects.

· V39.01 and V39.08 (object 1 and 8) are combined at a level of 0.118 in the next step. This results in a theoretical similarity of 0.118 between these two objects.

· V39.04 and V39.06 (object 4 and 6) are combined at a level of 0.115 in the next step. This results in a theoretical similarity of 0.115 between these two objects.

· The clusters that contain object 2 and 4 (v39.02 and v39.04) are combined. Note that only the first object in each cluster is enumerated. The cluster containing object 2 consists of the object 2 and 7, the cluster containing object 4 consists of object 4 and 8. The similarities between clusters (object 2 and object 4, object 2 and object 8, object 7 and object 4 and object 7 and 4) are set equal to the agglomeration level of 0.029. 

· In the next step the clusters containing object 2 and object 3 are combined. The first cluster consists of the objects 2, 7, 4 and 8. The second one of the objects 3 and 5. All similarities between the two clusters (object 2 with object 3, object 2 with object 5, object 7 with object 5, and so on) are set to 0.003.

· Finally the clusters containing object 1 and object 2 are merged to one large cluster. The similarities between the two clusters are set to –0.024.

Figure 4-13 summarizes the values of the theoretical similarity matrix.


V39.01
V39.02
V39.03
V39.04
V39.05
V39.06
V39.07

V39.01








V39.02
-0.024







V39.03
-0.024
0.003






V39.04
-0.024
0.029
0.003





V39.05
-0.024
0.003
0.520
0.003




V39.06
-0.024
0.029
0.003
0.115
0.003



V39.07
-0.024
0.164
0.003
0.029
0.003
0.029


V39.08
0.118
-0.024
-0.024
-0.024
-0.024
-0.024
-0.024

Figure 4-13: Theoretical similarity matrix for the analyzed objects of chapter 4-2.

The matrix allows you to develop statistics to answer the question 'how good does the hierarchical structure fit to the data?'. The idea: Compute a statistic that compares the theoretical and the empirical similarity or dissimilarity matrix. 

The correlation gamma was proposed as one criteria:
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where S(+) is the sum of concordant relations: the objects (i,j) are more similar (or less similar) than objects (k,l) in both matrices. S(-) is the sum of discordant relations: the objects (i,j) are more similar (or dissimilar) than objects (k,l) empirically, but more dissimilar (or similar) than objects (k,l) theoretically. Only the elements below the diagonal (or the elements above) of both matrices are used for the computation.

The test statistic 
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is approximately standard normal distributed (Hubert 1974). An exact test distribution can be derived by simulation (Jain and Dubes 1988: 167-170).

The so called cophenetic correlation is another criteria. The cophenentic correlation is defined as Pearson´s r between the elements of the theoretical and the empirical similarity (or dissimilarity) matrix below (or above) the diagonal. The cophenetic correlation is
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 is the covariance between the elements of the theoretical and empirical similarity (or dissimilarity) matrix. 
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the standard deviation of the elements of the theoretical similarity (or dissimilarity) matrix. 

Further measures may be developed on the basis of some other goodness of fit index. For example one might apply the Stress coefficient of MDS .

SPSS does not provide both measures or other measures. They can be computed, if the empirical and the theoretical similarities are typed in the syntax or data file by the user. The user has to calculate the theoretical values manually, too. 

The alternative ALMO software (see chapter 4.13) offers both measures. For our example ALMO computes the following gamma and cophenetic correlation for the baverage solution:

*******************************************************************

kophenetischer Korrelationskoeffizient =    0.930 

Zahl der vorgeg.  Simulationen = 200

Zahl der erfolgr. Simulationen = 200

Erwartungswert        =    -0.01

Standardabweichung    =     0.16

Teststatistik         =     5.87

Schwellwert fuer      =     95 Prozent

                      =     0.27

--------------------------------------------------------------------

Gamma  =    0.554 

Zahl der vorgeg.  Simulationen = 200

Zahl der erfolgr. Simulationen = 200

Erwartungswert        =     0.03

Standardabweichung    =     0.19

Teststatistik         =     2.73

Schwellwert fuer      =     95 Prozent

                      =     0.35

--------------------------------------------------------------------

4.10 Comparing Dendrograms

The methods described in the previous chapter can be used to compare dendrograms of different solutions. In contrast to the previous chapter two or more theoretical dissimilarities matrices are compared. (In chapter 4.9 the empirical and the theoretical similarity or dissimilarity matrices were compared.)

4.11 Measuring the Fit of a Classification

The methods described in chapter 4.9 can be used to compare the classification of different solutions, too. A theoretical dissimilarity (or similarity) matrix is computed for a certain cluster solution and compared with the empirical dissimilarity (or similarity) matrix. For more details see Bacher (1996: 253-254). 

4.12 Graphical Presentation of a Cluster Solution

Sometimes cluster solutions are presented graphically on a two-dimensional space. Such a presentation can be obtained as follows:

· Run MDS for the dissimilarity (or similarity) matrix.

· Use the two-dimensional solution.

· Mark the clusters by circles.

This method is predominately used in the case of clustering variables. Figure 4-14 summarizes the results of the example of chapter 4-2. The circles were drawn manually (dotted lines = solution for four clusters; continuos line = clusters combined in the next step). The dimensional representation was calculated with Kruskal's nonmetric approach (Kruskal 1964a, 1964b). The statistic system ALMO (Holm 2000) was used to run MDS. The fit of the MDS is not important in this application. MDS is only used as an auxiliary tool. However, the fit should not be too poor. Otherwise, it my happen that objects of one cluster have a large distance. In the example the stress with the value of 0.077 was fair (Kruskal 19964a: 3).
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Figure 4-14: Graphical representation of a cluster solution

4.13 Comparison with other Methods

Clustering variables has become an unusual method. Factor analysis and multidimensional scaling are more frequently used to analyse the relations between variables. 

Factor analysis has the following advantages:

· Approved rules to determine the number of factors exist.

· Groups of variables can be identified.

· Relations between these groups are defined by factor loadings and factor correlations.

· Scores measuring on interval scale level can be computed for the cases.

Factor analysis requires correlations (or covariances) as similarity measures. This may be a disadvantage. MDS and cluster analysis allow you to use other similarity or dissimilarity measures. This is their advantage. 

Both methods (MDS and hierarchical cluster analysis) use different models. MDS assumes that objects are represented as points in a multidimensional space. Very often a two-dimensional Euclidean space is used. In contrast cluster analysis assumes that each object is part of a tree. Holman (1972) showed theoretically that these models are mutually exclusive and exhaustive. 'The distances among a set of n objects will be strictly monotonically related either to the distances in a hierarchical clustering systems, or else to the distances in a Euclidean space of less than n-1 dimensions, but not to both.' Therefore, either MDS with few dimensions or an hierarchy (computed with a cluster analysis) will fit to data. 

The simulation study of Pruzansky et al. (1982) supports this conclusions. They used the program system KYST for metric and nonmetric multidimensional scaling and ADDTREE for clustering. ADDTREE is a clustering technique that generalizes hierarchical techniques. Their results show that the appropriate model fit the data better than the inappropriate model for all noise (error) levels. The two models were comparable: KYST explains plan data as well as ADDTREE explains tree data. If noise increases the differences between the models decreases. 

The following procedure may be applied to select the appropriate model in practise:

· Analyse the data set with MDS and hierarchical cluster analysis. Use MDS, if MDS is able to reproduce satisfactorily the relations between the variables whereas the fit of cluster analysis is poor. Use cluster analysis, if the results are reciprocal (poor fit for MDS with few dimensions and good fit for hierarchical cluster analysis). The measures discussed in chapter 4.9 can be used for this purpose. Pruzansky et al. (1982) used correlation coefficients (the cophenetic correlation and a non-metric correlation coefficient) and distance measures (stress formula 2).

Additionally, the skewness of the distribution of distances can be computed for the model selection. Pruzansky et al. (1982) showed that skewness is positive for distance data and negative for tree data.

However, note: In practice, both methods can fit to the data well. This is the case if clusters exist in a dimensional space and if one is not interested in computing a hierarchy. 

A disadvantage of MDS to some extent is the fact that MDS requires a larger number of objects (variables) to produce stable results (Bacher 1996: 83-84).

4.14 Alternative Software Products

The following two software packages offer advanced techniques for hierarchical cluster analysis: 

Clustan Limited

16 Kingsburgh Road

Edingburgh EH12 6DZ

Scotland

Web: http:\\www.clustan.com
email: sales@clustan.com

ALMO Statistiksystem

Prof. Dr. Kurt Holm

Universtiät Linz

Web: http:\\www.uni-linz.ac.at

email: kurt.holm@jku.at

CLUSTAN is developed by Wishart (1999). The author programmed the cluster modules in ALMO.

additional features compared to SPSS
ALMO
CLUSTAN

weighting variables
· yes
· yes

additional hierarchical techniques
· complete linkage for over​lapping clusters

· generalized nearest neighbour
· William´s flexible strategy

· density method

information about ties
· yes
· yes

elaborated dendrogram
· yes, dendrogram can be truncated
· yes

information on cluster centres
· yes
· yes

Mojena´s rules
· yes
· yes (a)

measures for comparing classifications
· yes, Rand index
· no

additional homogeneity measure
· yes, index g
· no

measures for the fit of a dendrogram
· yes, gamma and cophenetic correlation
· no

measures for comparing dendrograms
· no, in preparation
· no

measures for the fit of a classification
· yes, gamma and cophenetic correlation
· no

(a) Mojena´s t1 is labelled as upper tail rule, Mojena´s t2 as moving average quality controll rule (Wishart 2000)

Figure 4-13: ALMO and CLUSTAN compared to SPSS CLUSTER

CLUSTAN offers a highly elaborated dendrogram technique. It allows you to cut a dendrogram and does not use ASCII codes as it is the case in SPSS and ALMO. Therefore, a dendrogram of many cases is represented on one page. As a further advantage, CLUSTAN is able to cluster large data files by hierarchical methods.

Additional test statistics are the great advantage of ALMO. They were discussed in the previous chapters.

4.15 Factors Influencing the Results

A variety of simulation studies has analysed factors influencing the results of a cluster analysis (summarizing Bacher 1996: 164). Milligan (1980), for example, analysed the following factors: 

1. outliers: 20 resp. 40 % outliers were added to the assumed cluster structure. 

2. irrelevant variables: One or two random variables were added. 

3. wrong dissimilarity measure: Catell´s similarity coefficient and the q correlation were used instead of Euclidean distances. 

4. method: The following methods were used: single, complete, weighted average, within average, centroid, median, Ward, k means with random starting values, k means with starting values from weighted average linkage.

In total 9,7% of wrong classification occurred. This level of wrong classification is very low considering that the data file contains 30% outliers and 27% irrelevant variables (1.5 from 5.5) on the average. Among the factors analysed (outliers, irrelevant variables, wrong similarity measure, method) the irrelevant variables are most important. Two irrelevant variables increase the error from 9.7% to 18.0%. The differences between the methods are small. K-means performed best, if starting values of weighted average linkage are used. Ward´s method and complete linkage are sensitive to outliers. Punj and Stewart (1983) reached a similar conclusion in their review on twelve simulation studies. The selection of variables seems to be the crucial point (Milligan 1980; Milligan and Cooper 1987; Green et al. 1990). 

However, it is difficult to generalize simulation results. They depend on the specification of the experiment and the evaluation criteria used. Most simulation studies were done in the 70s and 80s. They do not include new methods. Nonetheless, they give some information on the importance of factors influencing clustering methods.

4.16 Further Developments

Further developments of hierarchical cluster analysis took place in the following fields:

· generalization of neighbour methods (e.g. Bacher 1996: 264-270; Jain and Dubes 1988: 128-130; Gowda and Krishna 1978)

· methods for overlapping clustering (e.g. Bacher 1996: 261-262, Opitz and Wiedemann 1989)

· methods that allow restrictions (e.g. Ferligoj and Batagelj 1982, 1983)

· methods to compare dendrograms (e.g. the so-called consensus methods, Gordon 1999)
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Appendix: Rand.sps 

DATA LIST free /a  b  c d.

BEGIN DATA

7 1 0 0

0 0 3 0

0 0 0 3

0 0 0 1

0 0 0 0

END DATA.

compute e=0.

* read matrix data from a regular spss sav file.

MATRIX.

GET M /VARIABLES= a TO e.

PRINT M /TITLE='Original matrix'.

* nr=number of rows, nc=number of columns.

Compute nr=4.

compute nc=4.

loop #i=1 to nr.

+  compute m(#i,nc+1)=0.

+  loop #j=1 to nc.

+     compute m(#i,nc+1)=m(#i,nc+1)+m(#i,#j).

+  end loop.

end loop.

loop #j=1 to nc+1.

+  compute m(nr+1,#j)=0.

+  loop #i=1 to nr.

+     compute m(nr+1,#j)=m(nr+1,#j)+m(#i,#j).

+  end loop.

end loop.

print m/title='matrix with row and column sums'.

compute a=m.

print a.

loop #i=1 to nr+1.

+  loop #j=1 to nc+1.

+     compute a(#i,#j)=a(#i,#j)*(a(#i,#j)-1)/2.

+  end loop.

end loop.

print a/title='matrix with elements (m(i,j) over 2)'.

compute S1=a(nr+1,nc+1).

compute S2=0.

loop #i=1 to nr.

+  loop #j=1 to nc.

+     compute S2 = S2 +  a(#i,#j).

+  end loop.

end loop.

compute S3=0.

loop #i=1 to nr.

+  compute S3=S3 + a(#i,nc+1).

end loop.

compute S4=0.

loop #j=1 to nc.

+  compute S4=S4 + a(nr+1,#j).

end loop.

compute rand=(S1+2*S2-(S3+S4) ) / S1.

compute adjrand=(S2- S3*S4/S1) / ( (S3+S4) /2 - (S3*S4) / S1).

print S1.

print S2.

print S3.

print S4.

print rand/title 'Rand Index'.

print adjrand/title 'adjusted Rand Index'.

END MATRIX.
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1 	Klastorin´s formula for variance has an error. Hubert und Levin (1977) report the correct formula. 
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